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We have studied the temporal evolution of electro-kinetic flows in the vicinity of
polarizable dielectric solids following the application of a ‘weak’ transient electric
field. To obtain a macro-scale description in the limit of narrow electric double
layers (EDLs), we have derived a pair of effective transient boundary conditions
directly connecting the electric potentials across the EDL. Within the framework of
the above assumptions, these conditions apply to a general transient electro-kinetic
problem involving dielectric solids of arbitrary geometry and relative permittivity.
Furthermore, the newly derived scheme is applicable to general transient and spatially
non-uniform external fields. We examine the details of the physical mechanisms
involved in the relaxation of the induced-charging process of the EDL adjacent to
polarizable dielectric solids. It is thus established that the time scale characterizing
the electrostatic relaxation increases with the dielectric constant of the solid from
the Debye time (for the diffusion across the EDL) through the ‘intermediate’ scale
(proportional to the product of the respective Debye- and geometric-length scales).
Thus, the present rigorous analysis substantiates earlier results largely obtained by
heuristic use of equivalent RC-circuit models. Furthermore, for typical values of
ionic diffusivity and kinematic viscosity of the electrolyte solution, the latter time
scale is comparable to the time scale of viscous relaxation in problems concerning
microfluidic applications or micro-particle dynamics. The analysis is illustrated for
spherical micro-particles. Explicit results are thus presented for the temporal evolution
of electro-osmosis around a dielectric sphere immersed in unbounded electrolyte
solution under the action of a suddenly applied uniform field, combining both
induced charge and ‘equilibrium’ (fixed charge) contributions to the zeta potential.
It is demonstrated that, owing to the time delay of the induced-EDL charging, the
‘equilibrium’ contribution to fluid motion (which is linear in the electric field) initially
dominates the (quadratic) ‘induced’ contribution.

1. Introduction
When considering fluid motion on micro-scales, viscous relaxation is typically

achieved within milliseconds. The time evolution of microflows is nevertheless highly
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relevant to a growing variety of applications of electro-kinetics in microfluidics and
colloidal dynamics in the sub-millisecond range. These include inter alia biochip
operation in high-speed electrophoretic separation processes (Fan & Harrison
1994; Jacobson et al. 1994, 1998), the use of short-duration pulsed electric fields
(Soderman & Jonsson 1996) in order to distinguish between particle velocities and
background electro-osmotic flow or to suppress thermal-zone broadening (Dose &
Guiochon 1993) as well as micro-mixing and micro-pumping by means of AC or
modulated DC fields (Ramos et al. 1999; Ajdari 2000; Gonzalez et al. 2000; Brown,
Smith & Rennie 2002). Owing to the short time scales involved, it is essential to
account for the unsteady dynamics of the electro-kinetic flows in these applications.

Within the framework of the standard assumptions of ‘narrow’-electric double
layer (EDL) and weak electric fields (Lyklema 1995) the leading-order electrostatic
and hydrodynamic problems are decoupled. The solution of the former yields the
fluid slip velocity at the outer edge of the EDL. Furthermore, for EDL width h,
typically of the order of a few tens of nm, viscous relaxation within the EDL
is practically instantaneous (h2/ν ≈ 10−9 s where for aqueous solutions we take the
kinematic viscosity ν ≈ 10−2 cm2 s−1). Hence (cf. Squires & Bazant 2004), incorporating
the instantaneous local values of ζ and Es , the dimensionless zeta potential and
tangential component of the electric field, respectively, we may still (quasi-steadily)
apply the familiar Helmholtz–Smoluchowski relation to obtain the dimensionless slip
velocity

vs = −ζEs, (1.1)

at all time t > 0. In (1.1) vs , Es and ζ are respectively normalized by ε0 εf E0 φ0/η,
E0 and φ0 = E0 εwh a/(εf a + εwh) (cf. Murtsovkin 1996; Yossifon, Frankel & Miloh
2007), where ε0 is the electric permittivity of vacuum, εf and εw denote the dielectric
constants of the electrolyte solution and solid wall, respectively, E0 is a characteristic
magnitude of the external field, η is the dynamic fluid viscosity and a is a geometric
length scale of the problem.

Most previous analyses of transient electro-kinetic phenomena have focused on
non-polarizable solids. They have accordingly assumed constant (instantaneously
established) slip velocity and (uniform) zeta potential and thereby studied transient
electrophoresis (Morrison 1969, 1971; Ivory 1984; Keh & Huang 2005) and electro-
osmosis (Hanna & Osterle 1968; Ivory 1983; Soderman & Jonsson 1996; Keh &
Tseng 2001; Santiago 2001; Kang, Yang & Huang 2002; Yang, Ng & Chan 2002;
Erickson & Li 2003; Luo 2004; Yang et al. 2004; Campisi, Accoto & Dario 2005;
Mishchuk & Gonzalez 2006; Zhang et al. 2006) in response to various modes of
suddenly applied external fields.

In the presence of polarizable solids the external field (presumed weak) does,
however, affect the diffuse charge within the (thin) EDL. This interaction is manifested
in a zeta potential which is no longer an equilibrium material property, but rather
depends upon the applied field. These induced-charge effects have been extensively
studied in polarizable colloidal particles (Levich 1962; Simonov & Dukhin 1973;
Simonov & Shilov 1973; Dukhin & Murtsovkin 1986, see also Squires & Bazant
2004 and references cited therein) and more recently in the context of microfluidic
applications (e.g. Ramos et al. 1999; Ajdari 2000; Gonzalez et al. 2000; Brown et al.
2002; Bazant & Squires 2004; Harnett et al. 2008) largely under steady or AC fields.

While most attention has focused on electro-kinetics in the vicinity of conductors,
it is well known that the very (often inevitable) presence of a thin dielectric layer
of surface contamination (for instance by oxides or adsorbed species on electrode
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surfaces) can substantially modify the induced zeta potential and the associated
electro-kinetic phenomena. The significance of polarization effects has also been
established for the dynamics of spherical (Dukhin 1986; Gamayunov, Murtsovkin &
Dukhin, 1986; Murtsovkin 1996; Miloh 2008a) and non-spherical (Yossifon et al.
2007; Miloh 2008b; Yariv 2008) colloidal dielectric particles as well as for the flows
around corners at junctions of nearly insulating micro-channels (Thamida & Chang
2002; Takhistov, Duginova & Chang 2003; Yossifon, Frankel & Miloh 2006) and in
microfluidic mixing applications (Nadal et al. 2002; Wang et al. 2006).

An important aspect of the transient induced-charge electro-kinetic problem is the
relaxation time scale of the electrostatic problem which (Macdonald 1970) may reach
here the ‘intermediate’ scale ha/D (where D denotes an ionic diffusion coefficient).
For typical values (D ≈ 10−5 cm2 s−1, δ = h/a ≈ 10−3), we have ha/D ∼ a2/ν, i.e. both
electrostatic and hydrodynamic relaxation processes may take place on comparable
time scales. Evidently, unlike the above-mentioned examples of non-polarizable solids,
one cannot assume here an instantaneously established (step function) fluid slip
velocity.

The study of transient induced-charge electro-kinetic problems has so far considered
only the dynamics of the diffuse electric charge (as opposed to the complete electro-
kinetic problem including the temporal evolution of the attendant fluid motion).
Furthermore, previous analyses of the relaxation process in the electrostatic problem
have essentially been confined to simple geometrical configurations (e.g. planar
electrodes, spherical colloidal particles) of conducting solids (Bazant, Thornton &
Ajdari 2004; Chu & Bazant 2006). Existing estimates of the relaxation time scale
for polarizable dielectric solids are largely based on the use of heuristic equivalent
electric-circuit models.

The aim of the present contribution is thus to gain a better understanding of
the physical processes underlying the transient electro-kinetic relaxation phenomena
following the application of an external field in the presence of polarizable solids
(of arbitrary shape and dielectric permittivity). Owing to the large-scale disparity
associated with the narrow-EDL problem, we seek to obtain, in a similar manner
to corresponding steady electro-kinetic problems, a macro-scale description avoiding
the need to resolve the details of the EDL. To this end we derive in the next section
effective leading-order boundary conditions directly relating the electric potentials
within the bulk electroneutral solution and the solid wall, respectively. The actual
analysis needs only to address the transient electrostatic problem for uncharged
polarizable solids. However, this subsequently affects the time evolution of the electro-
osmotic flows associated with the respective contributions of both the induced and
equilibrium surface charge. The newly derived conditions are general in the sense that
they apply to arbitrary external-field variation, solid geometry (provided that δ � 1
is uniformly satisfied) and material (dielectric) properties. They are subsequently
applied in § 3 to analytically study the time evolution of electro-osmosis around
a dielectric sphere immersed in a symmetric electrolyte solution of equal ionic
diffusivities following the application of a general non-uniform axisymmetric electric
field. Explicit results are then presented for a suddenly applied uniform field. By
means of these we can quantitatively examine the effects of the solid dielectric
constant and the relative magnitudes of the respective ‘induced’ and ‘equilibrium’
parts of the zeta potential on the evolution of the resulting flow. Further discussion
and concluding comments appear in § 4. The Appendices outline the calculation of
the stream function (Appendix A) and inverse Laplace transforms (Appendix B),
respectively.
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2. Effective macro-scale boundary conditions in the transient electrostatic
problem

We consider a symmetric electrolyte (z+ = − z− = z) and make the standard
assumptions of a thin EDL (i.e. δ � 1) and weak electric fields (i.e. Ψ = z Fφ0/�Θ � 1,
cf. Lyklema 1995), wherein F denotes the Faraday number, � the universal gas
constant and Θ the absolute temperature. Within this framework, the hydrodynamic
and electrostatic problems are decoupled. Furthermore, the domain of the latter
problem separates into three sub-domains: the electroneutral solid wall and bulk
solution with their harmonic electric potentials ϕw and ϕf , respectively, and the
‘inner’ domain of the diffuse EDL whose electric potential φ satisfies Poisson’s
equation. To obtain the requisite macro-scale conditions connecting ϕw and ϕf on the
solid–electrolyte interface, we focus on the inner domain which (for δ � 1) is locally
one-dimensional in the direction of the coordinate line y ′ normal (in the outward
sense) to the surface of the solid. We define the corresponding ‘outer’ (y) and ‘inner’
(Y) dimensionless variables through

y ′ = ay = hY. (2.1)

In the present approximation, the concentrations of the ionic species normalized by
n0, the uniform ambient concentration of the bulk solution, can be described by

ni = 1 + 2Ψ n̂i (i = 1, 2), (2.2)

where n̂i denote deviations of the (dimensionless) local concentrations of anions and
cations (i = 1, 2, respectively) from the uniform bulk concentration. To leading order
(in the limit of small δ and Ψ ) φ and n̂i(i = 1, 2) satisfy the approximate forms of
both Poisson’s equation

∂2φ

∂Y 2
= −(n̂1 − n̂2), (2.3)

and the continuity (Nernst–Planck) equations for the ionic species

β2
i

∂n̂i

∂t
=

∂2n̂i

∂Y 2
∓ 1

2
(n̂1 − n̂2) (i = 1, 2). (2.4)

In (2.4) β2
i = h2/Di T , wherein T is the appropriate time scale (to be specified later

on) and Di (i = 1, 2) denote the respective ionic diffusivities of the solute. On the
surface of the solid φ and n̂i satisfy the electrostatic conditions

φ = ϕw and
∂φ

∂Y
− α

∂ϕw

∂y
= −σ at y, Y = 0, (2.5a, b)

and the vanishing of the normal components of the respective ionic fluxes, i.e.

∂n̂i

∂Y
= ∓1

2

∂φ

∂Y
(i = 1, 2) at Y = 0. (2.6)

In (2.5b) α = (εw/εf )δ and σ is the dimensionless equilibrium (i.e. independent of
any externally applied field) surface charge density which is scaled by φ0ε0εf /h and
presumed uniform over the solid surface. At the outer edge of the EDL we impose
the asymptotic matching condition

φ|Y→∞ ∼ ϕf |y→0, (2.7)

and the electroneutrality condition

n̂i = 0 (i = 1, 2) as Y → ∞. (2.8)
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The above equations and boundary conditions are supplemented by the initial
conditions

n̂i(Y, 0) = n̂(eq)(Y ) (i = 1, 2). (2.9)

The linearity of the present problem allows for the generic representation f = f (in) +
f (eq) of φ and n̂i as a superposition of an ‘equilibrium’ part (eq) exclusively associated
with σ and an ‘induced’ part (in) satisfying the above problem with (2.5b) and (2.9)
replaced by their homogeneous counterparts. In the sequel we focus on the ‘induced’
part of the problem. To simplify the notation we accordingly omit the superscript (in)
unless it simultaneously appears together with (eq).

We generically denote by G(Y, s) the Laplace transform of g(Y, t)

G(Y, s) =

∫ ∞

0

e−stg(Y, t) dt = L{g(Y, t)}. (2.10)

The transformed problem resulting from (2.4), (2.6) and (2.8) together with
the homogeneous initial conditions readily yields Ni(Y, s) = L{n̂i(Y, t)} (i = 1, 2).
Substituting these into the right-hand side of the transformed (2.3) and integrating
twice with respect to Y, while denoting by (Ff , Fw, F ) =

∫ ∞
0

e−st (ϕf , ϕw, φ) dt the
Laplace transform of the various potentials, we obtain

F (Y, s) =

(
∂F

∂Y

)∣∣∣∣
(0,s)

[(
1 +

B1(s)

λ2
1

+
B2(s)

λ2
2

)
Y +

B1(s)

λ3
1

e−λ1Y +
B2(s)

λ3
2

e−λ2Y

]
+ A(s),

(2.11)
where

λ2
1,2 = 1

2

[
1 +

(
β2

1 + β2
2

)
s ±

√
1 +

(
β2

1 − β2
2

)2
s2

]
. (2.12)

In (2.11) we select for λ1,2 those branches where λ1,2 > 0 for s > 0; the explicit
expressions of B1,2(s; β1, β2) are here omitted. Applying the transformed matching
condition (2.7) one gets

Ff ∼ A(s) and
∂Ff

∂y
∼

(
∂F

∂Y

)∣∣∣∣
(0,s)

1

δ

(
1 +

B1(s)

λ2
1

+
B2(s)

λ2
2

)
as y → 0.

Making use of these expressions we eliminate A(s) and (∂F/∂Y )|(0,s) from the
transformed conditions (2.5a, b) thereby obtaining

Fw − α

(
B1(s)

λ3
1

+
B2(s)

λ3
2

)
∂Fw

∂y
= Ff at y = 0 (2.13)

and
∂Ff

∂y
=

α

δ

(
1 +

B1(s)

λ2
1

+
B2(s)

λ2
2

)
∂Fw

∂y
at y = 0. (2.14)

Equations (2.13) and (2.14) constitute the Laplace-transformed version of the sought
macro-scale transient conditions directly connecting Fw and Ff across the EDL.
These effective newly derived conditions are a central result of the present analysis.
They are applicable to the calculation of the transient induced-charge electro-kinetic
flow around polarizable solids of any dielectric constant for a general geometry of
the solid and an arbitrary time variation of the non-uniform external electric field.
As such they present a rigorous alternative to the prevalent use of equivalent RC-
circuit models. For all finite values of α, the solution of the transient macroscopic
electrostatic problem thus consists of the simultaneous calculation of the potentials
ϕf (r, t) and ϕw(r, t) (wherein r denotes the position vector) which are harmonic within
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the respective electroneutral fluid and solid domains and satisfy (inverse transforms
of) (2.13) and (2.14) on the surface of the solid (as well as the appropriate regularity
and far-field conditions).

The subsequent derivation is considerably simplified when assuming equal ionic
diffusivities. While D1,2 are never strictly equal to each other (the closest case is,
perhaps, potassium chloride wherein the respective ionic mobilities of the K+ and Cl−

ions differ by some 4%, see Lide 1994), this inequality is only of secondary importance
with regard to our present purpose to gain physical insight into the relaxation process.
By following the common practice (Gonzalez et al. 2000; Bazant et al. 2004; Squires &
Bazant 2004) and assuming that D1,2 =D, β1,2 =β , λ2

1 = 1+β2s = λ2, λ2
2 = β2s, B1 = −1

and B2 = 0. Thus, (2.13) and (2.14), respectively, simplify to

Fw +
α

λ3

∂Fw

∂y
= Ff at y = 0 (2.15)

and

∂Ff

∂y
=

α

δ

β2s

λ2

∂Fw

∂y
at y = 0. (2.16)

Taking inverse transformations of the above yield

ϕw +
2α

β3

∫ t

0

(
∂ϕw

∂y

)∣∣∣∣
(0,τ )

e−t−τ/β2
( t − τ

π

)1/2

dτ = ϕf at y = 0 (2.15′)

and

∂ϕf

∂y
=

α

δ

[
∂ϕw

∂y
− 1

β2

∫ t

0

(
∂ϕw

∂y

)∣∣∣∣
(0,τ )

e−(t−τ )/β2

dτ

]
at y = 0, (2.16′)

respectively, which constitute the key result of this section. In the small-time limit,
i.e. t → 0+, (2.15′) and (2.16′) become equivalent to the homogeneous counterparts of
(2.5) when replacing φ by ϕf , which is consistent with the initial (at t = 0+) absence
of an induced EDL. In the other (long-time) limit, asymptotic expansions of the
convolution integrals in (2.15′) and (2.16′) for small β2 verify that they respectively
reduce to the Robin-type and homogeneous Neumann conditions of the steady
macro-scale electrostatic problem (Yossifon et al. 2007).

To gain some further physical insight into the relaxation process, we eliminate
α∂Fw/∂y between (2.15) and (2.16) to obtain

1

λ

∂Ff

∂y
=

β2s

δ
(Ff − Fw) at y = 0. (2.17)

Taking the inverse transform in conjunction with the initial vanishing of ζ (in), we get
the time – evolution equation

1

π1/2β

∫ t

0

(
∂ϕf

∂y

)∣∣∣∣
(0,t−τ )

e−τ/β2

τ 1/2
dτ =

β2

δ

d

dt
(ϕf − ϕw) at y = 0. (2.17′)

To leading order in β2 � 1 (i.e. T � h2
/
D) the left-hand side of (2.17′) simplifies to

yield the approximate charging equation

∂ϕf

∂y
∼ β2

δ

d

dt
(ϕf − ϕw) at y = 0. (2.17′′)

Here the left-hand side represents the instantaneous Ohmic charging rate at the outer
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edge of the EDL, which is equal to the growth rate of its total induced charge (or,
equivalently, of ζ (in)) on the right-hand side. Appearing in (2.17) is the parameter β2

/
δ

representing the ratio of the two time scales ha/D and T . Also appearing in the above
conditions is the parameter α which, in the terminology of an equivalent RC-circuit
model, represents the ratio of the capacitance of the dielectric solid ∼ εw/a and that
of the EDL ∼ εf /h. From this analogy it is anticipated (cf. Bazant et al. 2004) that,
when α � 1, the difference ϕf −ϕw , effectively representing the induced zeta potential,
becomes of comparable magnitude as ϕf . Consistent dominant balance in (2.17′′) then
requires that β2

/
δ ∼ O(1), thus suggesting that, for α � 1, the appropriate time scale

of description is indeed the intermediate scale T ∼ ha/D (we return to this point in
the next section, see (3.18) et seq.). In the limit α → ∞ (i.e. a conducting solid) ϕw =0
and our result then precisely reduces to the macro-scale model of Squires & Bazant
(2004, see their (7.48) and (7.50)).

Before proceeding to illustrate the use of the above general transient macro-scale
conditions, we pause to consider the evolution of the charge-density distribution
c(Y, t) = n̂1 − n̂2 (normalized by ε0εf φ0

/
h2). By use of the above-mentioned Laplace

transforms N1,2(Y, s), together with (2.5b) and (2.16) we obtain the transformed charge-
density distribution. Inverse transformation and integration by parts then yield for
equal ionic diffusivities

c(Y, t) = δ

∫ t

0

dτ

(πτ )1/2β
e−[(βY )2/(4τ )+τ/β2]

[(
∂φf

∂y

)∣∣∣∣
(0,t−τ )

+
1

β2

∫ t−τ

0

(
∂φf

∂y

)∣∣∣∣
(0,τ1)

dτ1

]
.

(2.18)

The instantaneous charge distribution within the EDL thus depends on the ‘history’
of both the rate of Ohmic charging and the time evolution of the total EDL charge
represented by the first and second terms within the brackets in (2.18), respectively.
This history dependence reflects time delays inherent in the charge redistribution
processes within the EDL. Asymptotic expansion of (2.18) for β2 � 1 while neglecting
exponentially-small terms, leads to the rather simple expression for the transient
charge-density distribution within the EDL

c(Y, t) ∼ δ

β2
e−Y

∫ t

0

(
∂φf

∂y

)∣∣∣∣
(0,τ )

dτ + O(δ). (2.18′)

Before concluding this section and for future reference we note that when T � h2
/
D

the charge distribution within the EDL has relaxed to a (quasi-) steady Boltzmann
distribution normalized by the instantaneous total charge.

3. Transient ICEO past a dielectric sphere
The use of the effective boundary conditions derived above will now be

demonstrated by applying them towards the macro-scale description of the electro-
osmotic flow around a dielectric sphere. To avoid excessively tedious calculations we
consider here the axisymmetric problem. For the externally applied electric potential

ϕa =

∞∑
n=0

an(t)R
nPn(μ), (3.1)
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where (R, θ) are spherical polar coordinates and Pn(μ) (n= 1, 2, . . .) are the Legendre
polynomials of μ = cos θ , we express the electric potentials

ϕf = ϕa +

∞∑
n=0

bn(t) R−(n+1)Pn(μ) and ϕw =

∞∑
n=0

cn(t) RnPn(μ). (3.2,3.3)

Here, bn(t) and cn(t) denote time-dependent coefficients to be determined in terms of
the prescribed coefficients of the applied field an(t). Both ϕf and ϕw thus assumed are
axisymmetric harmonic functions. The former satisfies the far-field condition ϕf = ϕa

when R → ∞ and the latter is regular within the solid. We denote by An(s), Bn(s)
and Cn(s) the Laplace transforms of an(t), bn(t) and cn(t), respectively. Applying then
(2.15) and (2.16) at R = 1, while identifying the local normal coordinate with R and
making use of the orthogonality properties of the Legendre polynomials one gets

Cn(s) =
(2n + 1)λ3

(n + 1 + n(α/δ))λ3 − n(α/δ)λ + n(n + 1)α
An(s), (3.4)

where λ(s) denotes the appropriate branch of λ1 = (1 + β2s)1/2 (see (2.15)).
Next, ζ (in), the induced zeta potential and Es , the tangential component of the

electric field at the surface of the sphere are expressed

ζ (in)(θ, t) = −
∞∑

n=1

zn(t)Pn(μ), (3.5)

where the summation extends from n = 1 since ζ (in) must integrate to zero over the
sphere surface and

Es(θ, t) =

∞∑
n=1

en(t) Ṗn(μ) sin θ, (3.6)

respectively, wherein

zn(t) = L−1
{nα

λ3
Cn(s)

}
, en(t) = L−1

{(
1 +

nα

λ3

)
Cn(s)

}
, (3.7a, b)

and Ṗn(μ) denotes dPn(μ)/dμ. Using the quasi-steady Helmholtz–Smoluchowski
relation (1.1), we then obtain the fluid slip velocity as the sum

vs(θ, t) = v(in)
s (θ, t) + v(eq)

s (θ, t), (3.8)

of the respective induced

v(in)
s =

∑
m,n

em(t) zn(t) Pn(μ) Ṗm(μ) sin θ, (3.9a)

and equilibrium

v(eq)
s = −ζ (eq)

∑
n

en(t) Ṗn(μ) sin θ, (3.9b)

contributions. In (3.9b) ζ (eq) is the dimensionless (normalized by φ0) equilibrium zeta
potential associated with the presumed uniform fixed surface-charge density σ (see
(2.5b)). Evidently, v(in)

s and v(eq)
s differ from each other both in their distribution

over the surface of the sphere as well as in their time evolution. Furthermore, it
is worthwhile to note that unless α � 1, the equilibrium contribution is affected by
the ‘induced’ portion of the electrostatic problem through the relaxation process of
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the tangential component of the electric field at the surface of the sphere (see the
discussion of figure 1).

Once vs(θ, t) has been obtained from the above solution of the electrostatic problem,
we may next formulate the hydrodynamic problem. The unsteady creeping flow of
the bulk electroneutral fluid is governed by the dimensionless continuity and Stokes
equations,

div u = 0 and ∂u/∂t + ∇p = ∇2u, (3.10, 3.11)

respectively, which are supplemented by the boundary slip velocity condition

u = eθ vs(θ, t) at R = 1, (3.12)

the far-field attenuation condition

u = 0 as R → ∞, (3.13)

and the initial condition u = 0 at t = 0 for all R � 1, where u represents the fluid
velocity vector. The pressure within the fluid p, and the time variable t , are here
normalized by ε0εf E0(φ0/a) and a2/ν, respectively.

It is convenient to make use of the axial symmetry of the present hydrodynamic
problem and express the radial (u) and azimuthal (v) velocity components in terms of
the Stokes stream function ψ

u =
1

R2 sin θ

∂ψ

∂θ
and v = − 1

R sin θ

∂ψ

∂R
. (3.14a, b)

Substituting these in (3.11) leads to

E2

(
E2 − ∂

∂t

)
ψ = 0, (3.15a)

where the operator E2 expressed in spherical polar coordinates is (Happel & Brenner
1965)

E2 =
∂2

∂R2
+

sin θ

R2

∂

∂θ

(
1

sin θ

∂

∂θ

)
. (3.15b)

These are supplemented by the boundary conditions

ψ = 0 and
∂ψ

∂R
= −vs(θ, t) sin θ at R = 1, (3.16a, b)

as well as the far-field attenuation and the initial vanishing of the fluid velocity. The
calculation of ψ for the general axisymmetric problem is outlined in Appendix A.
Explicit results will now be presented for the common case of a uniform step-function
external field.

3.1. An illustration: A suddenly applied uniform field

3.1.1. The relaxation process of the electrostatic problem

In this case the time variation of the external field is represented by Heavisides’s
function H(t), hence the only non-vanishing coefficient in (3.1) is a1 = H (t).
Accordingly A1(s) = − (E0a/φ0)/s (the multiplication factor is introduced so as to
make the magnitude of the dimensionless external field equal to unity) and from (3.4)

C1(s) = −
(

E0a

φ0

)
3

s

λ3

(2 + α/δ) λ3 − (α/δ)λ + 2α
, (3.17)

which is inverted in Appendix B to yield c1(t) = L−1{C1(s)} (B.5). From (B.5)
we see that the relaxation process of the electrostatic problem is characterized by
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both continuous and discrete eigenvalue spectra. The former, represented by the
integral term in (B.5), reflects the simultaneous occurrence of both diffusive charge
redistribution across the EDL and Ohmic charging. Since the diffusive transport
across the EDL of the charge introduced at its outer edge takes place on the Debye
(h2/D) time scale, the instantaneous charge distribution c(Y, t) depends not only
upon the instantaneous values of the charging rate and total charge but rather on
their entire time evolution from t = 0+ (which has been anticipated in (2.18)). The
dominant discrete eigenvalue of c1(t) occurs at

s2 ∼ −2δ

β2

[
1

α + 2δ
+

(
α

α + 2δ

)1/2
]

, (3.18)

to which corresponds the time scale

T ∼ ha

2D

[
1

α + 2δ
+

(
α

α + 2δ

)1/2
]−1

. (3.19)

To estimate T we first note that for α � 1 the expression in the square brackets
is dominated by the first term. For α ∼ 1 both terms are comparable and the last
term becomes dominant for α � 1. From this we readily find that T ∼ O(h2/D) for
α ∼ O(δ), i.e. the relaxation process is controlled by diffusion across the EDL. For
α � δ

T ∼ ha

2D

α

1 + α
. (3.19′)

This expression is equivalent to leading order in δ → 0 to the result of Bazant
et al. (2004, their (46)). Similar results have been obtained by Dukhin (1986), Ajdari
(2000) and Squires & Bazant (2004) who sought to account for the effect on the
relaxation time of the presence of a compact (Stern) layer or a dielectric coating
within the framework of an equivalent RC-circuit model. Thus, the relaxation process
is effectively represented by the charging of an equivalent capacitor (incorporating
both the EDL and the dielectric solid) through an Ohmic bulk resistor (whose
properties are determined by the combination of bulk ionic conductivity and length
scale, respectively). As we have noted above (cf. (2.17′′) et seq.), α represents the ratio
of the capacitance of the dielectric solid to that of the EDL. The appearance of the
multiplication factor α/(1+α) in (3.19′) is indeed tantamount to the replacement of the
capacitance of the EDL implicit in the intermediate time scale ha/D by the equivalent
capacitance of the EDL and dielectric solid in a series combination. This equivalent
capacitance and hence the corresponding relaxation time are both increasing with α,
T approaching the upper limit ha/2D when α → ∞ (for a conducting sphere). The
present rigorous analysis thus substantiates the above-mentioned estimates of the
appropriate relaxation time scale based on the use of modified RC models and
demonstrates that, for α � δ, the relaxation process is indeed dominated by the
Ohmic charging. Finally, we note that in the limit α → ∞, one obtains from (3.1),
(3.2) and (B.6)

ϕf ∼ −R cos θ

[
1 +

1

2R3

(
1 − 3e−(2δ/β2)t

)]
(3.19′′)

in complete agreement with the result for a conducting sphere appearing in Table I
of Squires & Bazant 2004.

Once the original function c1(t) has been determined, one can readily obtain from
(3.5) and (3.6) the following expressions for the time evolution of both the induced
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Figure 1. The effect of α on the evolution of the amplitude of the: (a) induced zeta
potential; (b) tangential component of the electric field.

zeta potential

ζ (in)(θ, t) = −2α

β3

(
t

π

)1/2

e−t/β2 ∗ c1(t) cos θ, (3.20a)

and the tangential component of the electric field

Es(θ, t) =

[
c1(t) +

2α

β3

(
t

π

)1/2

e−t/β2 ∗ c1(t)

]
sin θ. (3.20b)

Here f ∗ g denotes the conventional convolution integral between the functions
f and g. For the temporal evolution of the charge concentration distribution within
the EDL we similarly obtain

c(Y, θ, t) =
α

β
(π t)−1/2e−[t/β2+(βY )2/(4t)] ∗ c1(t) cos θ. (3.21)

The foregoing results are presented in figure 1 describing the effects of α on the
relaxation process for δ = 10−3. Part (a) shows the evolution of ζ (in)(0, t), the induced
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Figure 2. The effect of α on the relaxation to a Boltzmann distribution (dashed line) of
c(Y, 0, t) for δ = 10−3, α =10−3 (solid curves) and α = 102 (dotted curves).

zeta potential at θ = 0, on a logarithmic scale of the dimensionless time (normalized
by h2

/
D) for the indicated values of α. The various curves appear qualitatively similar,

starting initially from ζ (in) = 0 (in the absence of EDL) and approaching the common
limit ζ (in) = 1.5. This specific invariance with α of the long-time limit, which results
from the incorporation of the factor α/(1 + α) in the definition of φ0, is unique to a
spherical shape (see Yossifon et al. 2007). The main difference between the various
curves appearing in figure 1 (a) is the time interval during which the evolution takes
place. As stated before and in agreement with the above analysis, the relaxation time
varies from the Debye scale (∼h2/D) for α ∼ O(δ) through the intermediate scale
(∼ha/D) for α � 1. Indeed, only minor quantitative differences appear when α is
increased beyond α ≈ 10 or reduced below α � 10−3.

Part (b) of figure 1 similarly presents the relaxation to steady state of Es(π/2, t), the
tangential component of the electric field at θ = π/2. Whereas for the larger values
of α � 1, the time variation of Es is similar to that of ζ (in), for α � 0.1. Es possesses a
non-zero initial value (at t = 0+) which increases with diminishing α. For α � 10−4 Es

instantaneously relaxes (at t = 0+) to the steady-state value (Es =1.5 for the present
scaling). This observation is in agreement with the analytic solution for the potential
ϕf satisfying a homogeneous Neumann condition on the surface of an insulating
solid (α → 0) for all t > 0.

Figure 2 describes the temporal relaxation of c(Y, 0, t), the electric charge
density distribution within the diffuse EDL to the common equilibrium Boltzmann
distribution (the dashed curve). Presented is the variation with the ‘inner’ variable
Y of the ratio c(Y, 0, t)/c(0, 0, t) (as obtained from (4.2) and (4.5)) for δ =10−3

and α = 10−3 (solid lines) and α = 102 (dotted lines) at the indicated values of t.
While the curves pertaining to α = 102 lag behind their respective counterparts for
α = 10−3, the differences are relatively small. Furthermore, the various curves become
indistinguishable from the Boltzmann distribution for all t > 10. Thus, in accordance
with the above discussion (see (2.18) and (3.18) et seq.), the relaxation to the Boltzmann
distribution takes place on the Debye time scale essentially irrespective of the specific
value of α. From the union of Figures 1 and 2 we may therefore conclude that, for α
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which is not very small (relative to unity), the relaxation process of the electrostatic
problem consists of two phases: (i) the short-time establishment of a quasi-equilibrium
Boltzmann charge distribution and (ii) the intermediate-time quasi-steady Ohmic
charging of the EDL.

3.1.2. The temporal evolution of the electro-osmotic flow

By use of the relations (A.9) in conjunction with (3.8) and (3.9a) one gets

v(in)
s (θ, t) =

2

3
e1(t)z1(t) sin θ cos θ. (3.22)

Hence, (A.10) and (A.11) imply that

ψ (in)(R, θ, t) = −2

3
[e1(t)z1(t)] ∗ L−1{S2(R, t)} sin2 θ cos θ, (3.23)

in which L−1 {S2(R, t)} is given by (A.15) and both e1(t) and z1(t) are calculated
from (3.7) by means of the results appearing in Appendix B. From (3.19) and (3.23)
the velocity components of the ‘induced’ part of the flow can be obtained in a
straightforward manner.

Figure 3 displays a comparison between the time evolution of the radial distribution
of the azimuthal velocity component for δ = 10−3 and small (10−3, part a) and large
(102, part b) values of α, respectively. The solid curves present v(in)(R, π/4, t) at the
indicated values of t. The dashed lines in both parts of the figure depict the steady
distributions (which for spherical shapes are identical under the present scaling).
The temporal evolution of the electro-osmotic flow is found to be governed by two
processes: (i) the development of a fluid slip velocity at the wall and (ii) the diffusion
of the vorticity generated there into the bulk solution. The latter effect is characterized
in both cases by the same time scale (a2/ν). Hence, the differences between parts (a)
and (b) are to be rationalized in terms of the former mechanism which is related
to the above-discussed relaxation processes of the electrostatic problem (respectively
characterized by h2/D for α � 1 and ha/D for α � 1). Thus, in part (a) of the
figure we observe that as early as t = 1 v(in)

s (π/4, t) = v(in)(1, π/4, t) � 0.2 and that
at t = 10 v(in)

s (π/4, t) has already attained its steady value. In contrast with these,
in part (b) v(in)

s (π/4, t) is slowly increasing. For instance, at t =100 v(in)
s (π/4, t) is

still ≈ 0.08 and even at t = 1000 v(in)
s (t) has not yet reached its steady value. Since,

for α � 1 v(in)
s (π/4, t) is increasing at the wall much faster than the accompanying

viscous diffusion of fluid motion into the bulk, steep velocity gradients appear near
the sphere surface and persist through t ≈ 100. In contrast, no such steep velocity
gradients appear for the larger α, where both time scales characterizing the build up
of v(in)

s (π/4, t) and vorticity diffusion, are comparable (i.e. ha/D ≈ a2/ν). In agreement
with this physical distinction, figure 3(a) clearly indicates a reversal in the direction
of fluid motion with increasing radial distance, which could also be anticipated on
grounds of continuity arguments and the quadrupolar symmetry of the problem (cf.
(3.22)). This is expected to result in the appearance of closed-streamline patches
adjacent to the sphere which, with increasing t will eventually diffuse into the bulk
of the fluid with the streamlines gradually opening up. This phenomenon is indeed
manifested in the streamline patterns obtained for γ → ∞ in figure 4 (notwithstanding
the larger intermediate value of α = 1).

In most realistic micro-systems the equilibrium fixed surface charge σ and
accompanying ζ (eq) seldom vanish. Consequently, both contributions (3.9a, b) to the
fluid slip velocity simultaneously exist and the resulting flow consists of both ‘induced’
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Figure 3. Time evolution of the function v(in)(R, π/4, t) characterizing the radial distribution
of the azimuthal fluid velocity component for δ = 10−3, α = 10−3 (a) and 102 (b). The dashed
lines mark the steady distribution.

(3.23) and ‘equilibrium’ parts as indicated in (A.1). From (3.7b), (3.9), (A.2) and (A.7)
we obtain

ψ (eq)(R, θ, t) = ζ (eq)e1(t) ∗ L−1 {S1(R, t)} sin2 θ, (3.24)

where L−1{S1} is given in (A.14). Unlike Morrison (1969), who assumed that Es

and hence v(eq)
s relaxed instantaneously, we consider here the detailed effects of the

above-mentioned relaxation process of the electrostatic problem which shows up in
(3.24) through the convolution with e1(t). Such effects appear to be important for
sub-millisecond fast transient processes and should definitely be accounted for.

Figure 4 presents the time evolution of the resultant flow for δ = 10−3, α = 1 and the
indicated values of the parameter γ = |ζ (eq)|−1 representing the relative magnitudes of
the ‘induced’ and ‘equilibrium’ components (γ =0 corresponding to ψ (eq) and γ → ∞
to ψ (in), respectively). In agreement with the earlier discussion of the various time
scales characterizing the intriguing relaxation process, we observe here that, by t =103,
and for all values of γ , none of the flows has yet reached the corresponding steady
state. While each of the respective components of the flow pattern possesses fore–aft
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Figure 4. The temporal evolution of the streamline pattern for δ = 10−3 and α = 1. Presented
are the patterns at t = 1 (a), 10 (b), 100 (c), 1000 (d) and ∞ (e) for the indicated values of γ .

symmetry, it is anticipated that (similarly to the corresponding steady problem, cf.
Squires & Bazant 2004) for all finite values of γ , the superposition of the ‘induced’
and ‘equilibrium’ parts will break this symmetry. However, for all values of γ < ∞
presented, the streamline patterns at the earlier instants of time t = 1, 10 are nearly
identical to the corresponding ‘equilibrium’ pattern γ =0 (all possessing the same
dipolar fore–aft symmetry). This initial physical dominance of the ‘equilibrium’ part
is related to its linear-dependence as opposed to the quadratic-dependence of the
‘induced’ part on the initially small values of Es (see the curve α = 1 in figure 1b).
Indeed, for γ =1 the streamline pattern remains nearly symmetric even as late as
t = 102. At this time a flow stagnation point is apparent on the aft portion of the
sphere for γ = 10 and the streamline pattern is clearly asymmetric.

4. Discussion and concluding remarks
We have studied the macro-scale description of the temporal evolution of electro-

kinetic flows in the vicinity of polarizable solids following the application of a
transient electric field. Towards this end we have derived the effective transient
boundary conditions (2.15′) and (2.16′) directly connecting the electric potentials
across the EDL (thus, eliminating the need to resolve its details). These newly derived
conditions apply to general transient induced-charge electro-kinetic (i.e. electro-
osmosis, electrophoresis, dipolophoresis, etc.) problems involving polarizable solids
of arbitrary geometry and dielectric constants in the presence of general spatially
non-uniform and time-dependent weak external electric fields.

The pair of conditions (2.15′) and (2.16′), respectively, replace the Robin-type
(Yossifon et al. 2007) and homogeneous Neumann conditions pertaining to the
corresponding steady problem and appropriately converge to them in the long time
limit. The departure of (2.16′) from the homogeneous Neumann condition represents
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the (primarily Ohmic) transient charging process of the EDL. Owing to this difference,
the pair of electrostatic problems within the solid and the bulk electroneutral solution
are coupled to each other and need to be resolved simultaneously (as opposed to the
steady-state problem where these may be solved recursively).

Our analysis demonstrates that the time evolution of the electrostatic problem
mainly involves two physical processes: (i) Ohmic charging of the EDL resulting from
the combined effects of the transient external field and the polarization of the solid and
(ii) charge transfer across the EDL to establish a quasi-steady equilibrium Boltzmann
distribution. The latter, which is essentially a diffusive process, is characterized by
the Debye time scale h2/D irrespective of the value of the parameter α. The above
analysis also demonstrates that the time scale of the former charging process is
monotonically increasing with α � δ, ultimately becoming equal to the intermediate
time scale ha/D for α � 1 (in agreement with common RC models). Thus, for the
latter case, when considering practical transient electro-kinetic problems concerning
micro-particles or microfluidic applications, the evolution of the electrostatic and
hydrodynamic processes takes place on comparable time scales.

Identifying the parameter α as the ratio of the capacitance of the dielectric
solid and that of the EDL provides a qualitative interpretation of our results in
terms of an equivalent electric-circuit model. Furthermore, through this established
correspondence, the present rigorous scheme substantiates earlier results regarding
the effects of solid material dielectric properties on the time scale of the relaxation
process, the induced zeta potential, etc.

It is worthwhile to note that α ≈ 1 practically means a large but finite value of
the permittivities ratio εw/εf . While solids are often classified as ideally polarizable
(conducting) or non-polarizable (insulating), the entire spectrum of properties may
appear in natural or synthetic materials, including dielectrics possessing large relative
permittivities (see, e.g. Arlt, Hennings & de With 1985; Kuo et al. 2004; Flores-
Rodriguez & Markx 2006) satisfying α � δ.

The use of the newly proposed general macro-scale model has been illustrated by
considering the transient induced-charge electro-osmosis around a dielectric sphere.
The explicit results thus obtained demonstrate the qualitative physical differences in
the time evolution of the induced fluid motion when the electrostatic relaxation process
is either relatively fast (small α) or slow (α � 1). Since most realistic microfluidic and
colloidal systems usually include an equilibrium fixed-charge contribution to the
zeta potential, the electro-osmotic flow field may be calculated via a superposition
of the respective ‘induced’ and ‘equilibrium’ contributions. Each of these transient
components possesses the same geometrical symmetry as in the corresponding
steady problem. Their superposition is thus expected to lead to symmetry-breaking
phenomena by destroying the common fore–aft symmetry. A remarkable feature
depicted in figure 4 is, however, that for α ≈ 1 and all γ < ∞, the initial flow streamline
pattern is essentially dominated by the ‘equilibrium’ contribution associated with ζ (eq)

exhibiting the usual fore–aft symmetry. Furthermore, for γ � 1, this symmetry persists
over a significant time interval (nearly through t = 100). This particular mode of time
evolution physically demonstrates the role of the electrostatic relaxation process in
the extended suppression of the ‘induced’ contribution to the flow field for α � δ. The
endurance of the fore–aft symmetry reflects the early dominance of the ‘equilibrium’
contribution which is linear in (as opposed to the quadratic dependence of the
‘induced’ contribution upon) the initially small tangent electric field.

The transient induced-charge electro-osmosis problem around a dielectric spherical
particle has been selected in this paper for two reasons: Firstly, a spherical shape is the
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most common model for colloidal particles. The other reason is that, because of the
perfect isotropy, the dielectric sphere is amenable to analytical analysis. Application of
the newly established macro-scale description to problems involving other geometrical
configurations of polarizable solids (e.g. the time evolution of the flow around a
polarizable corner which is relevant to mixing processes, cf. Wang et al. 2006) or
other transient induced-charge electro-kinetic phenomena (e.g. the dipolophoresis of
a dielectric sphere in a transient non-uniform electric field) are currently under way
and will be reported elsewhere. Furthermore, it is recalled that the present description
has been developed within the framework of the common assumptions of a thin
EDL and weak fields. The former assumption is safely satisfied (with the possible
exception of certain singular points) in most micro-scale applications. However, from
both practical and fundamental aspects, relaxing the latter restriction seems a useful
future extension of the present work. Finally, it is desirable to examine the theoretical
predictions of the present analysis through a direct comparison with experimental
results. Obviously, the short sub-millisecond time scales involved get in the way
of an experimental resolution of these rapid electro-kinetic transient phenomena.
Nevertheless, the recent advances in the state-of-the-art μPIV techniques (e.g. Yan
et al. 2007) indicate that such a direct comparison may be feasible in the near future.

I. Frankel acknowledges the support of the J. and J. Gringorten Aeronautical
Research Fund and T. Miloh the partial support of the Lazarus Brothers Chair in
Hydrodynamics.

Appendix A: Calculation of ψ

It is convenient to represent ψ via the superposition

ψ = ψ (in) + ψ (eq), (A 1)

where each part satisfies (3.16b) for the corresponding term on the right-hand side of
(3.8).

(i) The ‘equilibrium’ part ψ (eq):

The functional form of (3.9b) together with the relation (3.14b) suggest

ψ (eq)(R, θ, t) =
∑

n

ψ̄ (eq)
n (R, t)Ṗn(μ) sin2 θ. (A 2)

Substituting this expression in (3.15) while making use of the Legendre equation
satisfied by Pn(μ) and the orthogonality property (A 8), we see that each ψ̄ (eq)

n (R, t)
needs to satisfy[

∂2

∂R2
− n(n + 1)

R2

] [
∂2

∂R2
− n(n + 1)

R2
− ∂

∂t

]
ψ̄ (eq)

n (R, t) = 0. (A 3)

Laplace transforming (A 3) and (3.16) while utilizing the homogeneous initial
condition we obtain the equation[

∂2

∂R2
− n(n + 1)

R2

] [
∂2

∂R2
− n(n + 1)

R2
− s

]
Sn(R, s) = 0, (A 4)

and boundary conditions
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Sn = 0 and
dSn

dR
= 1 at R = 1, (A 5a,b)

where L
{
ψ̄ (eq)

n

}
= ζ (eq) L {en(t)} Sn(R, s). From (A 4) we obtain the solution

Sn(R, s) = An(s)R
−n + Bn(s)R

n+1

(
1

R

d

dR

)n+1

e−
√

sR (A 6)

which appropriately attenuates as R → ∞. The coefficients An(s) and Bn(s) are to
be determined via application of (A 5). Once this is accomplished solution (A 2) is
calculated through

ψ̄ (eq)
n (R, t) = ζ (eq)en(t) ∗ L−1 {Sn(R, s)} . (A 7)

(ii) The ‘induced’ part ψ (in):

Making use of the orthogonality property∫ 1

−1

(1 − μ2)Ṗk(μ)Ṗl(μ) dμ =
2l(l + 1)

2l + 1
δkl, (A 8)

we expand

Pn(μ)Ṗm(μ) =
∑

l

qlṖl(μ), (A 9a)

where

ql =
2l + 1

2l(l + 1)

∫ 1

−1

(1 − μ2)Pn(μ)Ṗm(μ)Ṗl(μ) dμ, (A 9b)

to write (3.9a)

v(in)
s =

∑
m,n

em(t)zn(t)
∑

l

ql Ṗl(μ) sin θ, (A 9c)

which, similarly to (A 2), suggests the solution

ψ (in) =
∑
l,m,n

ψ
(in)
lmn(R, t)Ṗl(μ) sin2 θ. (A 10)

Following the same route as (A 3)–(A 7) we eventually obtain

ψ
(in)
lmn = ql[em(t)zn(t)] ∗ L−1 {Sl(R, s)} . (A 11)

For n = 1, 2 we obtain from (A 5) and (A 6)

S1 =

(
1√
s

+
1

s

)
1

R
−

(
1√
s

+
1

Rs

)
e−

√
s(R−1) (A 12)

and

S2 =
1

s2 + s3/2

[(
3s1/2 + 3s + s3/2

) 1

R2
−

(
3
√

s

R2
+

3s

R
+ s3/2

)
e−

√
s(R−1)

]
. (A 13)

These are readily inverted to yield

L−1{S1} =
1

R

[
1 + (πt)−1/2

]
− (πt)−1/2 e−(R−1)2/(4t) − 1

R
erfc

(
R − 1

2t1/2

)
(A 14)
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and

L−1{S2} =
[
3+(πt)−1/2−eterfc

(
t1/2

)] 1

R2
−(πt)−1/2e−(R−1)2/(4t)− 3

R2
erfc

(
R − 1

2t1/2

)

+

(
1 − 3

R
+

3

R2

)
eR−1+terfc

(
R − 1

2t1/2
+ t1/2

)
, (A 15)

respectively.

Appendix B: Calculation of c1(t)

Representing

C1(s) = −
(

E0a

φ0

)
3

(2 + α/δ)

1

s

(
1 +

α

δ

λ

�
− 2

α

�

)
, (B 1)

where �= (2 + α/δ) λ3 − (α/δ)λ + 2α, we first focus on the inverse transform
L−1{(s�)−1}. It is useful to note that for all practical cases εw/εf � 0.05 (e.g. Takhistov
et al. 2003, for acrylic and an aqueous solution). We therefore assume throughout
the subsequent derivation that δ2 � min {1, εw/εf }. Under this assumption, the cubic
�(λ) possesses three simple real zeros

λ1 ∼ 2δ, and λ2,3 ∼ ±
(

α

α + 2δ

)1/2

− δ. (B 2)

By the above selection of the branch λ > 0 for s > 0, only λ1 and λ2 are relevant to
the problem at hand. The singularities of (s�)−1 thus consist of the simple poles at

s0 = 0, s1 ∼ −1/β2, s2 ∼ −2δ

β2

[
1

α + 2δ
+

(
α

α + 2δ

)1/2
]

and the branch cut extending from s = − 1
/
β2 to infinity along the negative real axis.

Summation of the residues at the poles and the contribution of the branch cut yields

L−1

{
1

s�

}
∼ 1

2(1 + α)
+ 4

δ2

α
es1t − δ

α

s1

s2

(
α

α + 2δ

)1/2

es2t

+
1

π

∫ ∞

0

K(ξ, t)

[(
2 +

α

δ

)
ξ +

α

δ

]
dξ, (B 3)

wherein we define

K(ξ, t) =
(1 + ξ )−1ξ 1/2 e(1+ξ )s1t

(2 + α/δ)2 ξ 3 + 2 (2 + α/δ) (α/δ)ξ 2 + (α/δ)2 ξ + 4α2
.

Similarly we obtain

L−1

{
λ

s�

}
∼

{
1

2(1 + α)
+ 8

δ3

α
es1t − s1

s2

(
δ

α + 2δ

)
es2t +

2α

π

∫ ∞

0

K(ξ, t) dξ

}
. (B 4)

Combining these results and (B 1) we finally obtain

c1(t) ∼ −
(

E0a

φ0

){(
6δ2

α + 2δ

)
s1

s2

[
− 1

2δ

(
α

α + 2δ

)
+

(
α

α + 2δ

)1/2
]

es2t

+
3

2(1 + α)
− 6α

π

∫ ∞

0

K(ξ, t)ξdξ .

}
(B 5)
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Similarly to the above C1(s), application of (2.15) and (2.16) yields B1(s) = L{b1(t)},
one thereby gets

B1(s) = −
(

E0a

φ0

)
1

s

[
1 − α/δ

2 + α/δ
+

3α

δ

(
λ

�
+

α

�

)]
. (B 6)

The inverse transform is calculated by making use of (B 3) and (B 4) to yield b1(t). In
the limit when both δ and 1/α → 0 one gets ϕf (3.19′′).
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